2 resultados para TEMOZOLOMIDE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meningioma tumor growth involves the subarachnoid space that contains the cerebrospinal fluid. Modeling tumor growth in this microenvironment has been associated with widespread leptomeningeal dissemination, which is uncharacteristic of human meningiomas. Consequently, survival times and tumor properties are varied, limiting their utility in testing experimental therapies. We report the development and characterization of a reproducible orthotopic skull-base meningioma model in athymic mice using the IOMM-Lee cell line. Localized tumor growth was obtained by using optimal cell densities and matrigel as the implantation medium. Survival times were within a narrow range of 17-21 days. The xenografts grew locally compressing surrounding brain tissue. These tumors had histopathologic characteristics of anaplastic meningiomas including high cellularity, nuclear pleomorphism, cellular pattern loss, necrosis and conspicuous mitosis. Similar to human meningiomas, considerable invasion of the dura and skull and some invasion of adjacent brain along perivascular tracts were observed. The pattern of hypoxia was also similar to human malignant meningiomas. We use bioluminescent imaging to non-invasively monitor the growth of the xenografts and determine the survival benefit from temozolomide treatment. Thus, we describe a malignant meningioma model system that will be useful for investigating the biology of meningiomas and for preclinical assessment of therapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that It sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct Importance of DNA repair is hard to access. Here, it is shown that the Induction of photoproducts by UV light (UV-C) significantly Induces apoptosis In a p53-mutated glioma background. This Is caused by a reduced level of photoproduct repair, resulting In the persistence of DNA lesions in p53-mutated glioma cells. UV-C-Induced apoptosis in p53 mutant glioma cells Is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results Indicate that UV-C-induced apoptosis of p53 mutant glioma cells Is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data Indicate that unrepaired DNA lesions Induce apoptosis In p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that Induce the formation of DNA lesions whose global genomic repair is dependent on p53. (Mol Cancer Res 2009;7(2):237-46)